Lie series

It is a generalization of Taylor series. See @olver86 page 30.

In the context of the note exponential map#Motivation, we have that a vector field $X$ on a manifold $M$ gives rise to a flow in the sense that for a point $p\in M$ and a fixed "time" $t$ we obtain a point $q$ given by

$$ q=pe^{tX}=p\lim_{n\to \infty}(Id+tX/n)^{n}. $$

The velocities of this curves are precisely $X$.

Now, given a smooth function $F$ defined on $M$, we observe that if $X=\sum \xi_i\partial_{x_i}$

$$ \dfrac{d}{dt}F(pe^{tX})=\sum_{i=1}^n \partial_{x_i}F(pe^{tX})\cdot \xi_i(pe^{tX}) $$

and for $t=0$

$$ \left.\dfrac{d}{dt}\right|_{t=0} F(pe^{tX})=\sum_{i=1}^n \partial_{x_i}F(p)\cdot \xi_i(p)=X(F)(p). $$

This can be written in another way, according to Taylor

$$ F(pe^{tX})\approx F(p)+tX(F)(p) $$ and, moreover, $$ F(pe^{tX})\approx F(p)+tX(F)(p)+\frac{t^2}{2}X^2(F)(p)+\frac{t^3}{3!}X^3(F)(p)+\cdots $$

where $X^k(F)=X(X(\cdots(F)))$.

This expression is called Lie series.

If we take $F=(x_1,\ldots,x_n)$ the coordinate functions, then

$$ pe^{tX}=p+t\xi(p)+\frac{t^2}{2}X(\xi)(p)+\frac{t^3}{3!}X(X(\xi))(p)+\cdots \tag{*} $$

where $\xi=(\xi_1,\ldots,\xi_n)$ and $X(\xi)=(X(\xi_1),\ldots,X(\xi_n))$ and so on.

In this sense, expression $(*)$ is a formal power series solution to the system of first order ODEs

$$ \dot{x}=X(x). $$

________________________________________

________________________________________

________________________________________

Author of the notes: Antonio J. Pan-Collantes

antonio.pan@uca.es


INDEX: